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Abatract--Stormer-Numerov approximations of high accuracy were developed for solutions of non- 
linear boundary value problems and nonlinear elliptic partial differential equations. The approximations can 
be easily adopted also for parabolic partial differential equations in one and more space dimensions and 
feature fourth-order accuracy. For boundary value problems only three nodes are necessary to obtain the 
desired fourth order accuracy. The finite difference formula for parabolic partial differential equations can be 
readily generalized to a nonequidistant mesh so that automatic regridding in space may be used. The Stomer- 
Numerov approximations are important for solution of problems where storage limitations and computer 
time expenditure preclude standard seco;id order methods. Because of the fourth order approximations a low 
number of mesh points can be used for a majority of chemical engineering problems. The application of 
Stormer- Numerovapproximations is illustrated on a number of examples. 

INTRODUCTION 

The increased use of computational techniques in 
studies of dissipative structures has produced a need to 
develop reliable and efficient algorithms to deal with a 
coupled set of nonlinear ordinary differential equa- 
tions (boundary value problem), elliptic and parabolic 
differential equations. These problems feature steep 
space gradients so that a great number of grid points 
must be used to resolve the problem. Frequently we 
must solve the problems in two (or three) dimensions. 
The use of standard second order methods is preclud- 
ed because of enormous number of grid points which 
are necessary for resolution. It has been demonstrated 
on simple problems several times that high order fi- 
nite-difference methods may provide important im- 
provements of codes in terms of diminishing the 
required number of grid points as well as the computer 
time for desired resolution. 

The present work represents the study of Stormer- 
Numerov finite difference approximation to determine 
the feasibility of its use in chemical engineering prob- 
lems. A comparison of this method with standard sec- 
ond order schema will be also performed. 

*Author to whom correspondence should be addressed. 

GENERAL APPLICATION OF STORMER- 
NUMEROV APPROXIMATIONS 

1. Boundary value problems for ordinary dif. 
ferential equations 

So far, several techniques have been proposed for 
resolution of nonlinear boundary value problems~, e.g. 
shooting, finite-difference methods combined with 
the Newton-Raphson procedure, invariant imbedding, 
false transient method, and continuation[ 1]. Assessing 
the relative merits of different methods is not an easy 
task. For a number of difficult nonlinear boundary 
value problems finite difference methods proved P.o be 
a very reliable tool. The ultimate objective of a finite- 
difference scheme is generation of accurate results 
using a low number of grid points. Among other things, 
in this paper, we try to answer the following question: 
What is the best discretization of the given boundary 
value problem? What emerges from our investigation 
is a promising class of methods which make use of 
three nodes and are of fourth order accuracy. 

Consider the boundary value problem 

a y " +  by'  - f (x, y) =0  (la) 

subject to linear boundary conditions 

ct~y (0) +,80y' (0) = 7o 
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a,y(1) +fl,y" (1)=~, , .  ! lb) 

Using a pad6 approximation, we can write [2] 

Do 
3'~, = ) y,, (2! 

1 
1+ 6 h2D+D~ 

D . D  
y2= ) y,, +3! 

14. l h~D.D_  

where D 0, D+ and D are operators which are defined 
in the following way: 

1 ~5'.,+. - Y,, , ) (,la i Doy.= 

D+ y .= 1 .  : y,~+ ~ _ Y,d (4b 

D 1 r -Y~= h-  :Yh- Y~-, I.  

In practical calculations, we can set the derivaUves 
y,,and y2 to F,, and S~, respectively, i.e.: 

y;,=f~, y;,'=&. ,5;  

By substituting Eq. (5} into Eqs. (2) and (3) and alter 
performing the operator operations we have: 

1 2 1 ~ - F ~ +  21h iy.+, ),. , (6~ g - F ~ , , +  -6 F , , - ,  -= - ~ 

1 

n = l ,  ..., N ( 7 )  

Eq. (1) for a nodal point n reads: 

aS~ ~- bF,- f~=O, n=0,  -.-, N ~ I  68) 

Eviclently Eqs. (6)-(8) represent a (3x3) block tridi- 
agonal system of equations. This set of equations can 
be simplified after eliminating Sn+ t, S,,, and S,,_ I from 
Eq. (7) by using Eq. (8). The modified Eq. (7) reads: 

1 b ( F ~ + , + I O F . + f ; _ , ; , §  c/, . ,~.lO/. 
12 a 

1 
+/ , ,_ , )=  h~ {y~,+, - 2y,,+y,,-, ). n =  1, "-, N .9~ 

Eq. (6) along with Eq. (9) forms a (2x2) block tridi- 
agonal system. For a special type of Eq. (1), b=0,  the 
calculation procedure can be further simplified. 
Evidently, for this ease, we can rewrite Eqs. (7) and (8) 

in the form: 

1 ,[yn+ i _ _  2y;, ~-v~ , ) -• (A. ,  + ioA• ~ = hw 12a 

= l, "-, N il,;) 

Eq. (1 O) is the classic Stormer-Numerov formula which 
has 0(t74) accu/acy [3]. 

The accuracy of the approximations used can be ob- 
tained by a Taylor expansion of Eqs. (6) and (7): 

1 
F',,- 3~ = - l~t) k 'y  ,: l la; 

S,,- >~,'= - 1~ 77 v " / l l b .  
240 " 

The Stormer-Numerov formula has 0(h 4) accuracy, but 
only a tridiagonal system of equations must be solved. 
For a case with constant coefficients, Eq. (1) can be 
transformed to eliminate the first derivative. Using a 
substitution 

b 
} =  Yexp (-- ,2~x) (12a 

Eq. (1) yields: 

~- , ,=Z e x p ~ a x  t i?a., '  Y = - g ( x , Y , ,  (12b) 
t2' 

This equation does not contain the first derivative and 
the classic Stormer-Numerov formula can be applied. 
Let us now discuss the different type of boundary con- 
ditions. 
1-1. Boundary conditions of the first kind 

These conditions result from (lb) for ~90=&=0, 
therefore 

y{t})= 7olao and y ( 1 ) =  y,/a, .  (13) 

Eqs. (6)-(8) represent (3N+2) equations for (3N+4) 
variables (Yn, n= I,.--,N; F,,, S,,, n= 0,..., N+ 1). The two 
missing equations can be easily developed by differen- 
tiation of Eq. (6):: 

9 i i 

zs 6 so.,  = : , ,  . ,:15i 

The resulting set of finite difference equations is de- 
scribed by a band (nine diagonal) matrix with some 
off-diagonal elements. Using the transformation, Eq. 
(12.a), it is necessary to solve only N equations for N 
variables Y,. It should be noticed that this procedure 
yields very precise values of first derivatives at the 
boundary, F o and F,,v+ ~, which are necessary in chemi- 
cal engineering calculations to evaluate the flux of 
mass or heat. In the standard 0(h 2) procedures, we 
must calculate the first derivatives from asymmetrical 
finite-difference tormulas which may result in a very 
inaccurate value. 
1-2. Boundary conditions of the second kind 

Boundary conditions of the second kind result 
from { 1 b) for % = a i = 0; 70 = 71 = 0. Rqs, (6)-(8) and (] b) 

July ,  1 ~  



Stormer-Numerov Approximation for Numerical Solutions of Ordinary and Partial Differential Equations 167 

represent (3N + 4) equations for (3N + 4) variables O',, 
S~; n=0 , . . . ,  N + l ;  F,,, n - 1  . . . .  N). 
1-3. Boundary conditions of the third kind 

Boundary conditions (l b) can be rewritten as 

aoyo i-'8ok~= 70 !1~5a.I 

Eqs. (6}-(8), (14). (15), {16a) and (16b) represent (3N + 6) 
equations for (3N + 6) variables y,~, F,, and 5,, (n = 0 . . . . .  
N+l ) .  

Boundary conditions for Eq. (12b) were developed 
by Hildebrandt [3]: 

@0 1l 2 
' , 1 - / z ~  ) y o - Y ~ -  . ~ 0  [97go ~-l14g,-39g2 {- 8g~[ 

= - h Z~ ~ 17a ) 
,6'0 

a i l ie  

-Y~e r  )Y~'~- 360 .Sg, ~-3.qg, 

-~ l14g,+97g,+~j -- h 7' ,8, " !lTb~ 

Evidently the tridiagonal structure of the matrix is 
violated by the first and last rows. To restore the Iridi- 
agonal structure the first three and the last three line- 
arized equations must be pre-solved by elimination. 
After the elimination procedure, the first and last rows 
contain only two elements, Yo, Yt, and X,v, Yn+ ~, respec- 
tively and the standard Thomas algorithm can be 
used. 
2. Ell iptic e q u a t i o n s  

There are many nonlinear elliptic equations in phys- 
ics which feature very steep gradients [4] or space st-, 
ructurs {5,6]. Numerical resolution of such problems 
may represent a very difficult problem. The simplest 
approach consists in flooding the space by an equidis- 
tant dense grid of mesh points using some standard sec- 
ond order approximation. However, even on the fast- 
est computers, the computer time may be enormous. 
An alternative approach may take advantage of for- 
mulas exhibiting high order of accuracy. Difference ap- 
proximations to the Poisson equation on a square 
mesh have been extensively studied [7-9].The 9-point 
difference approximation to the Poisson equation on a 
uniform rectangular mesh developed by Kantorovich 
and Krylov [8] four decades ago proved Io be a very' 
important scheme. [n our considerations, we are going 
to deal with an elliptic nonlinear Poisson equation 

32-' 3~Y g({: v ) = 0  ,is e, ) e L ) =  ,',-1, 1~ 3~  2 k----3r= ,>7,_ r/ 

x ( -  1, t) (18) 

yi~. r ; )=c  for (.s e, r~ )e3D.  (19.) 

Consider a uniform mesh with the spacing h. Let 
Y,J Y(se,' ~); g',./=g(~i' 77.1' Yu)" 

For the discretization of the elliptic equation (18) we 
can construct the 0(h 2) and 0(h 4) schemes: 

O(hZ)-~Py, . ,  +/z~g,,, 0 z . j =  l. "", m (20) 

1 1 . O!h~! - (~ ~ 4 ~  : '~>%+h'!ig~.,~- ,~g,:.~;=0. 

i. j =  1, "". m.  t21) 

Here we have introduced the symbols as follows: 

--]Y,.J--Y,+~.a~, --Y~-,,~-~ - -Y.  ,.J ~-~-Y*-*., * - 4y~,~ 

2.9) 

and 

<~)e.,-Y~.,.~ +.re.j, § 5'~-,,,+3:,-,.,-4y~.~. {2J) 

The resulting set of nonlinear sparse algebraic equa- 
tions can be solved by the Newton-Raphson method. 
The matrix generated by the 9-point formula is syn> 
metric, block-tridiagonal matrix (each block itself 
is a tridiagonal matrix), and is irreducible, weakly 
diagonally dominant and positive difinite [9]. Sym- 
metric block tridiagonal nature of ~hese Wstems in- 
dicates that fast direct methods such as block cyclic 
reduction, fast Fourier transform and tensor product 
method [10] cart be applied to the 9-point discretiza- 
lion. 
3. Parabol ic  equat ions  

A number of methods exist for numerical solution 
of parabolic differential equations. Among the vast 
variety of methods two have been extensively used in 
chendcal engineering practice: (1) Crank-Nicolson 
technique [11] and {2) orthogonal collocation [12]. 
These methods work very well for a great deal of sin> 
pie and smooth parabolic problems. The current re- 
quirements for computational fluid dynamics, reaction 
engineering and biomalhematics codes for realistic 
problems resulted in the impetus for the developn~enl 
and implementation of higher order finite difference 
techniques. The: most difficult problems in dealing 
with parabolic differential equations are those which 
destroy a prior error bounds (shock-like wave fronts 
featuring high curvature) or which are stiff. The former 
situation occurs for heat and mass transfer problems 
associated with strong exothermic reaction ]131] or dif- 
fusion and autocatalytic reaction [14]. These problems 
can also be stiff. For numerical solution of parabolic 
partial differential equations, we can also apply the 
idea of difference formulas of hgih-order accuracy. The 
procedure which we are going to develop in this sec- 
tion is the Crank-Nicotson technique featuring tridb 
agonal form and fourth order accuracy. 
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For the sake of simplicity let us consider a simple 
quasilinear parabolic equation: 

c3y _ 02y §  (x, y) (241 
3 t 3 x  2 " 

We can write this equation in the form: 

a ' ~  = ay ay 
a x  2 Ot - g ( x ' Y ) = f ( x ' Y '  o T - l "  (25) 

Applying the Stormer-Numerov formula (10) to Eq. 
(25) we get: 

h '  
y , ,+,-  2y,~+y,~-, = ~2 (f.+, + 1 0 A + A _ ,  ) (2G 

or 

y,,+~ - 2yn+y, ,_,  = i 2  

- (g~+,+lOgn+g~_~'J.  n = l . - - - . N  (27) 

Evidently, Eq. (27) is the O(h 4) representation of 
parabolic equations (24). This equation cannot be 
integrated directly by explicit methods and we nmst 
presotve Eq. (27) to get the system in an explicit form. 
Of course, after presolving this equation the "method of 
lines" approach can be used [15]. However, we can in- 
tegrate Eq. (27) by a trapezoidal rule: 

1 [ ( ~ : l - 2 y , { * ' +  . . . . .  7 2- ) 'n- ,)  ~ (y, ,+,-  2y,~q Ya-,)] 

h a  ( j+l  J ~ ~ j+ l  �9 : _ _  _ + y ~ _ ,  - y r  12k [~§ y,~+~ , i05= - 10y,~ ~+' 

~ 
2 /*r +1 j + l  /+1  d a d 

24 ~ ' + '  -~lOg. +g,~-i +g,~*t +lOg:~+gn ,] .  

n = 1, -", N (28) 

We may notice that Eq. (28) is represented by a set of 
algebraic equations having a tridiagonal structure. 
This finite-difference approximation is a Crank-Nicol- 
son scheme having 0(h 4, k 2) accuracy. 

For a 2D-quasilinear parabolic equation 

~'_  _ O ~ y + O ~ y 
Ol - ~ 0~]2 - g i y ) .  (29) 

the Kantomvich-Krylov formula yields: 

1 (4@+ ~ ) y , ~ , +  h ~- 1 - 
6 

=h~[  (d2-)..,,,+ 1~22" (~tt) . . -] .  (30) d t  

Numerical integration of this expression by a trape- 
zoidal formula gives rise to a Crank-Nicolson schema 
having O(h 4, h 4, k 2) accuracy. 

EXAMPLE~ 

In this section the discretization procedures de- 
scribed above will be applied to physical problems. 
Following type of problems will be considered: 

(1) Nonlinear boundary value problem for ordi- 
nary differential equations (mass transfer and aulocata- 
lytic chemical reaction). 

(2) Calculation of limit points (explosion in a 2D 
system). 

(3) Analysis of Hopf bifurcation points (onset of in- 
stability in diffusion-reaction systems). 
1. ~ p l e  1 

For a model reaction suggested by Nicolis and Pri- 
gogine [16], 

A ~ X  

B +  X--, Y + D  

2 X §  Y - + 3 X  

X--, E 

following transport equations can be written: 

D d ~ A  
4 d z ~  = A (31a) 

D d2X X z X d~-z2 = ( B - 1 )  X -  Y -  A (31b) 

d ~ y , 
Dr~z~z2 = X  Y -  BX.  (31c) 

Fixed boundary conditions are considered: 

z = O , z = L ;  A = A o ,  X = X o .  Y = Y o .  (31d) 

Following values of the parameters have been used 
for calculation: 

DA=0.1; Dx=O.O016; D,.=0.008 

A~  ; Xo=:2; Y~=2.3;  /3=4.6 

L=0 .4 .  

For this parameter values seven steady states can 
be calculated. The profiles of X are drawn in Fig. 1. 
Three steady states are symmetric, four are asym- 
metric. The results of calculation are reported in 'Fable 
I. The error E presented in this table is defined am: 

10' 
E = ~ ,  I x ,  - x ~ , l .  

Here N is the number of grid points and X,~ t is the ref- 
erence solution. The solution calculated for h=  0.01 (99 
internal points) has been considered as a reference 
solution. Fig. 2 displays the dependence log E versus 
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I. Multiple solutions of nonlinear boundary 
value problem given by Eqs. (31a)-(31d). 

log h. This figure reveals that the error  is 0(/72) and 
O(h 4) for the s tandard  difference schema  and  the 
S tormer-Numerov  technique,  respectively. 

Based on this table we can notice that the Brandt 
multilevel approach  [17] can fail if at the beg inn ing  of 

the calculation a low n u m b e r  of grid points is us~M. The  
table reveals thai for 5 internal  points  only  the brach a 
and  b can be calculated and  ei ther  d ivergence  or con- 
vergence to these  profiles resulted for profiles for bran- 
ches  c, d, e, f, and g. For N = 19 and  for O(h 2) s chema  
all profiles can be located. From the  table it can be re- 
ferred that 24 internal  points for 0(h 4) scheme  yield 
comparab le  accuracy with 99 points  for O(h 2) pro- 
cedure.  Since the'. compute r  t ime is proport ional  to N 2, 
the  improvemen t  in the economy of calculation is by 
at least one  order  of magnilude.  Evidently for lwo di- 
mens iona l  p rob lems  the improvemen t  is h igher  by 
more  than two order  of magnitudes.  
2. E x a m p l e  2 

This example  should  illustrate the possibility of cal- 
culation of limit points  for non l inea r  b o u n d a o '  value  
problems  and  elliptic equations.  For a system of no.m- 
l inear  algebraic equat ions  

F~ ~,~, u,, u2, ---, u~; - 0 i =  I, 2, -.-. N. i:~2) 

a b ranch ing  point  occurs if: 

Table I. Error E versus  N 

N Approx. Branch a Branch b Branch c Branch d Branch e Branch f Branch g 

99 0(h 4) R R R R R R R 
0(h 2) ] 3 8 57 10 30 23 33 

74 0(h 4) 0 0 0 0 0 0 0 
0(h 2) 23 14 l 01 17 53 41 60 

49 0(h 4) 1 0 2 0 0 1 t 
0(h 2) 52 32 228 40 120 93 136 

39 O(h 4) 3 0 4 1 2 2 3 
O(h 2) 83 50 355 63 189 ] 48 214 

29 0(h 4) 10 2 13 4 6 8 8 
O(h 2) 152 90 624 t 15 338 270 389 

24 0{h 4) 22 4 28 8 14 16 17 
O(h 2) 228 131 896 172 487 396 577 

19 0(h 4) 60 11 70 22 34 43 45 
0{h 2) 389 210 1387 271 766 648 944 

14 0(h 4) 158 38 233 79 115 t 75 156 
0(h 2) 639 396 NC 551 1374 1436 1S52 

9 O(h 4) 483 204 C.P NC 624 962 717 
0(h 2) 826 1112 C.P NC NC 2567 8182 

5 O(h 4) 411 2021 CP NC NC NC NC 
O(h 2) ] 062 2953 CP NC NC NC NC 

N = number of internal mesh points 
R = reference solution 
O = a small number e,0.5 
CP =~ no convergence after 50 Newton iterations 
NC -convergence to a solution that may not be compared wilh the reference 
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Fig. 2. Log E versus log h on the branch b. 

F~.L(O',~.u2,'", us) -ale'_G<8", u,, a a , " ' ,  ~} 

= 0. ~.{3) 

Hem G is the Jacobian matrix with the elements 

e " =  . . . .  7 ;  - -  i , j = : , . - - ,  

The branching point can be determined from a si- 
multaneous solution of Eqs. [32) and (33). 

(a) Thermal explosion of solid explosives, occurr- 
ing in a 2D system, is described by a nonlinear ellip- 

tic equation 

O ~ 0  O~0 
9 x  ~ + ~7~ = - o'exp 0 <51 

( x , / ) r  - 1 , 1 )  

subject to boundary conditions 

O=0 for (x, y., ~ 0[2 (5,6) 

For 6'<6* a steady state solution exists wlnile for6>5"* 
the equation does not possess a solution. The value 
~=i~'* is referred to as the critical conditkm of expl,> 
sion. It can be easily shown that for 6"-8* a limit point 

exists. 
]For discretization the Kantorovich-Krrrylov 9-point 

0(h 4) formula has been used. The results of calculation 

are reported in Table 2. 
(b) Exothermic reaction and diffusion occurring in 

a 1D system is described as a nonlinear boundwy 

value problem. 

Table 2. Results for critical conditions for explosion 

h 8" 

1/2 1.6988 
The correct value ~*= 1.702031 

1/4 1.70188 

Table 3. Results for ignition and extinction condi- 
tions for a catalytic reaction {Y--20, g=0.4) 

Ignition 

h 6* 

1/2 0.13726 

1/4 0.137540 

Extinction 

h 6" 

1/2 0.07831 

1/4 0.077912 

The correct value fi* = 0.137557 

The correct value 6* = 0.0779303 

d~dx ~Y = a Y exp t . - iZ~ ~ i - ~ ' 7  i 1:~TI 

x=  >1 ; Y = l .  38i 

This equation features, two limit points, i.e.extinc- 
tion and ignition conditions exist. For the discreliza- 
tion the Stormer-Numerov schema has been used. The 
results are reported in Table 3. 
3. E x a m p l e  3 

Transient heat conduction, diffusion and exother- 
mic first order reaction may be described by a set of 
two parabolic differential equations: 

c3~ ~ - 7fl c x p ( 1 4 0 / 7 "  
(39) 

~-t ----- a -~  ~ ~  ( 14 0/7" 

subject to boundary conditions 

~--~+1 ; y  1, 0 - - 0 . .  (41) 

Here y and O represent the dimensionless concentra- 
tion and temperature, respectively. From the mathe- 
matical point of view, the onset of oscillations can be 
characterized by so called Hopf bifurcation. The clas- 
sical Hopf bifurcation occurs in a smooth automomous 
system of ordinary differential equations 

d~ 
= f (u, 8) (42j 

when the real parameter 6" has values near a critical 
value 8= 6"* at which an isolated steady state solution 
u* loses linear stability by virtue of a complex con- 
jugated pair of eigenvalues of the Jacobian matrix 
F= {OflOu},*. At the Hopf bifurcation point the Jaco- 
bian matrix has a pair of pure imaginary eigenvalues. 

The Stormer-Numerov scheme was used for discre- 
tizarion of parabolic equations (39)--(41). For calculation 

of the values of the Hopf bifurcation points we used a 
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Table 4. Hopf bifurcation points for parabolic equa. 
lions (Y= 20, ~ = 0.2 Lw= 5.5) 

Approximation 
Mesh size 

O(h 2) 0(h 4) 

1 1.18 1 362 

1/2 1.386 1 4403 

1/3 1.419 1 44363 

1/4 1.430 1 44417 

I/5 1.4353 1 44432 

1/6 1.4380 1 444366 

technique which is described elsewhere. [18]. The 
results of calculation are reported in Table 4. From this 
table it can be inferred that already one internal point 
results in two significant digits accuracy. Two internal 
points for 0(h 4) discretization scheme yields better ac- 
curacy than 6 internal points for O(h 2) scheme. 
Evidently, the one-point discretization makes it possi- 
ble to develop analytical criteria for Hopt bifurcation 
[4], as a result the discretization by the Stormer- 
Numerov scheme can successfully compete with the 
"linearization" [19] and one point collocation [12]. 

CONCLUSIONS 

The application of Stormer-Numerov high order 
difference approximations has proved to be a very 
reliable procedure for discretization of many chemical 
engineering problems described by elliptic or parabol- 
ic nonlinear equations. For problems where the pro- 
files are smooth enough we can usually use a low 
number of points to get accurate results. For ellip:~ic 
problems featuring boundary layer character it is wise 
to use nonequidistant mesh. The Stommr-Numerov 
finite.difference approximations can compete with or- 
thogonal collocation approach both in terms of ac- 
curacy and simplicity of programming. 
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